Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 1349

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Assessment of hydrogen embrittlement behavior in Al-Zn-Mg alloy through multi-modal 3D image-based simulation

Fujihara, Hiro*; Toda, Hiroyuki*; Ebihara, Kenichi; Kobayashi, Masakazu*; Mayama, Tsuyoshi*; Hirayama, Kyosuke*; Shimizu, Kazuyuki*; Takeuchi, Akihisa*; Uesugi, Masayuki*

International Journal of Plasticity, 174, p.103897_1 - 103897_22, 2024/03

 Times Cited Count:0

Hydrogen(H) embrittlement in high-strength aluminum(Al) alloys is a crucial problem. H accumulation at the interface of precipitates in Al alloy is considered to cause embrittlement. However, there is no quantitative knowledge regarding the interaction between H distribution and stress field near cracks. In this study, using a multi-modal three-dimensional image-based simulation combining the crystal plasticity finite element method and H diffusion analysis, we tried to capture the stress distribution near the crack, its influence on the H distribution, and the probability of crack initiation in the experimental condition. As a result, it was found that grain boundary cracks transition to quasi-cleavage cracks in the region where the cohesive energy of the semi-coherent interface of MgZn$$_2$$ precipitates decreases due to H accumulation near the tip. We believe the present simulation method successfully bridges nanoscale delamination and macroscale brittle fracture.

Journal Articles

The BCC $$rightarrow$$ FCC hierarchical martensite transformation under dynamic impact in FeMnAlNiTi alloy

Li, C.*; Fang, W.*; Yu, H. Y.*; Peng, T.*; Yao, Z. T.*; Liu, W. G.*; Zhang, X.*; Xu, P. G.; Yin, F.*

Materials Science & Engineering A, 892, p.146096_1 - 146096_11, 2024/02

 Times Cited Count:0 Percentile:0.04(Nanoscience & Nanotechnology)

Journal Articles

Quantitative measurement of figure of merit for transverse thermoelectric conversion in Fe/Pt metallic multilayers

Yamazaki, Takumi*; Hirai, Takamasa*; Yagi, Takashi*; Yamashita, Yuichiro*; Uchida, Kenichi*; Seki, Takeshi*; Takanashi, Koki

Physical Review Applied (Internet), 21(2), p.024039_1 - 024039_11, 2024/02

 Times Cited Count:0

Journal Articles

CH$$_3$$Cl dissociation, CH$$_3$$ abstraction, and Cl adsorption from the dissociative scattering of supersonic CH$$_3$$Cl on Cu(111) and Cu(410)

Makino, Takamasa*; Tsuda, Yasutaka; Yoshigoe, Akitaka; Di$~n$o, W. A.*; Okada, Michio*

Applied Surface Science, 642, p.158568_1 - 158568_6, 2024/01

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Journal Articles

Local structural changes in V-Ti-Cr alloy hydrides with hydrogen absorption/desorption cycling

Ikeda, Kazutaka*; Sashida, Sho*; Otomo, Toshiya*; Oshita, Hidetoshi*; Honda, Takashi*; Hawai, Takafumi*; Saito, Hiraku*; Ito, Shinichi*; Yokoo, Tetsuya*; Sakaki, Koji*; et al.

International Journal of Hydrogen Energy, 51(Part A), p.79 - 87, 2024/01

 Times Cited Count:0 Percentile:0.01(Chemistry, Physical)

Journal Articles

Stress corrosion cracking induced by the combination of external and internal hydrogen in Al-Zn-Mg-Cu alloy

Tang, J.*; Wang, Y.*; Fujihara, Hiro*; Shimizu, Kazuyuki*; Hirayama, Kyosuke*; Ebihara, Kenichi; Takeuchi, Akihisa*; Uesugi, Masayuki*; Toda, Hiroyuki*

Scripta Materialia, 239, p.115804_1 - 115804_5, 2024/01

 Times Cited Count:0 Percentile:0(Nanoscience & Nanotechnology)

Stress corrosion cracking (SCC) behaviors induced by the combination of external and internal hydrogen (H) in an Al-Zn-Mg-Cu alloy were systematically investigated via in situ 3D characterization techniques. SCC of the Al-Zn-Mg-Cu alloy could initiate and propagate in the potential crack region where the H concentration exceeded a critical value, in which the nanoscopic H-induced decohesion of $$eta$$-MgZn$$_2$$ precipitates resulted in macroscopic cracking. External H that penetrated the alloy from the environment played a crucial role during the SCC of the Al-Zn-Mg-Cu alloy by generating gradient-distributed H-affected zones near the crack tips, which made Al alloys in water environment more sensitive to SCC. Additionally, the pre-existing internal H was driven toward the crack tips during plastic deformation. It was involved in the SCC and made contributions to both the cracks initiation and propagation.

Journal Articles

Recrystallization of bulk nanostructured magnesium alloy AZ31 after severe plastic deformation; An in situ diffraction study

Liss, K.-D.*; Han, J.-K.*; Blankenburg, M.*; Lienert, U.*; Harjo, S.; Kawasaki, Takuro; Xu, P. G.; Yukutake, Eitaro*; Kawasaki, M.*

Journal of Materials Science, 23 Pages, 2024/00

 Times Cited Count:0 Percentile:0.01(Materials Science, Multidisciplinary)

Journal Articles

Weakened oxygen adsorbing the Pt-O bond of the Pt catalyst induced by vacancy introduction into carbon support

Okazaki, Hiroyuki*; Idesaki, Akira*; Koshikawa, Hiroshi*; Matsumura, Daiju; Ikeda, Takashi*; Yamamoto, Shunya*; Yamaki, Tetsuya*

Journal of Physical Chemistry C, 127(49), p.23628 - 23633, 2023/12

 Times Cited Count:0 Percentile:0(Chemistry, Physical)

Journal Articles

Dirac Kondo effect under magnetic catalysis

Hattori, Koichi*; Suenaga, Daiki*; Suzuki, Kei; Yasui, Shigehiro*

Physical Review B, 108(24), p.245110_1 - 245110_11, 2023/12

 Times Cited Count:0 Percentile:0(Materials Science, Multidisciplinary)

We develop a mean-field theory of a novel Kondo effect emerging in systems without a Fermi surface, which instead emerges under strong magnetic fields. We determine the magnitude of the Kondo condensate, which is a particle pairing composed of conducting Dirac fermions and localized impurities. We focus on the competition between the Kondo effect and the energy gap formation that stems from the pairing among the Dirac fermions leading to the dynamical chiral symmetry breaking. We find that this competition induces a quantum critical point. We also investigate finite-temperature effects. This system at vanishing fermion density can be studied with Monte Carlo lattice simulations, which do not suffer from the sign problem.

Journal Articles

Multi-modal 3D image-based simulation of hydrogen embrittlement crack initiation in Al-Zn-Mg alloy

Higa, Ryota*; Fujihara, Hiro*; Toda, Hiroyuki*; Kobayashi, Masakazu*; Ebihara, Kenichi; Takeuchi, Akihisa*

Keikinzoku, 73(11), p.530 - 536, 2023/11

In Al-Zn-Mg alloys, suppression of hydrogen embrittlement is necessary to improve their strength. In this study, the distribution of stress, strain, and hydrogen concentration in the actual fracture region was investigated using the crystal plasticity finite element method and hydrogen diffusion analysis based on a model derived from three-dimensional polycrystalline microstructural data obtained by X-ray CT. In addition, the distributions of stress, strain, and hydrogen concentration were compared with the actual crack initiation behavior by combining in-situ observation of tensile tests using X-ray CT and simulation. The results show that stress loading perpendicular to the grain boundary due to crystal plasticity dominates grain boundary crack initiation. It was also found that internal hydrogen accumulation due to crystal plasticity has little effect on crack initiation.

Journal Articles

First-principles calculations of hydrogen trapping energy on incoherent interfaces of aluminum alloys

Yamaguchi, Masatake; Ebihara, Kenichi; Tsuru, Tomohito; Itakura, Mitsuhiro

Materials Transactions, 64(11), p.2553 - 2559, 2023/11

 Times Cited Count:1 Percentile:0(Materials Science, Multidisciplinary)

We attempted to calculate the hydrogen trapping energies on the incoherent interfaces of MgZn$$_2$$ precipitates and Mg$$_2$$Si crystallites in aluminum alloys from first-principles calculations. Since the unit cell containing the incoherent interface does not satisfy the periodic boundary condition, resulting in a discontinuity of crystal blocks, the hydrogen trapping energy was calculated in a region far from the discontinuity (vacuum) region. We found considerable trapping energies for hydrogen atoms at the incoherent interfaces consisting of assumed atomistic arrangement. We also conducted preliminary calculations of the reduction in the cohesive energy by hydrogen trapping on the incoherent interfaces of Mg$$_2$$Si in the aluminum matrix.

Journal Articles

Precise observation of spontaneous oscillation of CO oxidation reaction for Rh metal nanoparticle catalyst by using time-resolved X-ray absorption fine structure technique with dispersive optics

Matsumura, Daiju; Kimura, Yusaku*; Tsuji, Takuya; Mizuki, Junichiro*

SPring-8/SACLA Riyo Kenkyu Seikashu (Internet), 11(5), p.296 - 299, 2023/11

no abstracts in English

Journal Articles

Development of Pd$$_{2}$$MnGa metamagnetic shape memory alloy with small energy loss

Ito, Tatsuya; Xu, X.*; Omori, Toshihiro*; Kainuma, Ryosuke*

Busseiken Dayori, 63(3), p.8 - 10, 2023/10

no abstracts in English

Journal Articles

Local atomic displacements and sign of the structural transformation in medium-entropy alloys observed in extended X-ray absorption fine structure spectra

Ikeda, Yoichi*; Umemoto, Yoshihiko*; Matsumura, Daiju; Tsuji, Takuya; Hashimoto, Yuki*; Kitazawa, Takafumi*; Fujita, Masaki*

Materials Transactions, 64(9), p.2254 - 2260, 2023/09

 Times Cited Count:0

Journal Articles

Dirac/Weyl-node-induced oscillating Casimir effect

Nakayama, Katsumasa*; Suzuki, Kei

Physics Letters B, 843, p.138017_1 - 138017_7, 2023/08

 Times Cited Count:0 Percentile:0.02(Astronomy & Astrophysics)

The Casimir effect is a quantum phenomenon induced by the zero-point energy of relativistic fields confined in a finite-size system. This effect for photon fields has been studied for a long time, while the realization of counterparts for fermion fields in Dirac/Weyl semimetals is an open question. We theoretically demonstrate the typical properties of the Casimir effect for relativistic electron fields in Dirac/Weyl semimetals and show the results from an effective Hamiltonian for realistic materials such as Cd$$_3$$As$$_2$$ and Na$$_3$$Bi. We find an oscillation of the Casimir energy as a function of the thickness of the thin film, which stems from the existence of Dirac/Weyl nodes in momentum space. Experimentally, such an effect can be observed in thin films of semimetals, where the thickness dependence of thermodynamic quantities is affected by the Casimir energy.

Journal Articles

Casimir effect for fermions on the lattice

Nakayama, Katsumasa*; Suzuki, Kei

Proceedings of Science (Internet), 430, p.379_1 - 379_9, 2023/04

The conventional Casimir effect has been studied in the continuous spacetime, but to elucidate its counterpart in the lattice space is an important subject. Here, we discuss various types of Casimir effects for quantum fields on the lattice. By using a definition of the Casimir energy on the lattice, we show that the Casimir effect for the Wilson fermion is similar to that for the continuous Dirac fermion. We apply our definition to an effective Hamiltonian describing Dirac semimetals, such as Cd$$_3$$As$$_2$$ and Na$$_3$$Bi, and find an oscillatory behavior of the Casimir energy as a function of film thickness of semimetals. We also study contributions from Landau levels under magnetic fields and the Casimir effect for nonrelativistic particle fields on the lattice.

JAEA Reports

Development of bearing units used in the rotating shaft system for power generation in the JAEA-Tokai Tandem accelerator

Otokawa, Yoshinori; Matsuda, Makoto; Abe, Shinichi

JAEA-Technology 2022-037, 23 Pages, 2023/03

JAEA-Technology-2022-037.pdf:5.38MB

Bearing units of rotating shaft system for power generation in the JAEA-Tokai Tandem accelerator had a short operating life from the beginning of the accelerator installation, and even after replacing the bearing unit, early failures often occurred. Therefore, the quantity and frequency of replacement are large, and a lot of time is spent in regular maintenance performed by opening the accelerator pressure vessel, and solving this problem has been a long-standing concern. As a result of considering the cause of this early failure, it was considered that the load caused by parallel, angular, and axial misalignment of the upper and lower bearing units was the cause. In order to solve this problem, we have developed a bearing unit having metal disc-spring couplings in the upper and lower flanges to allow for parallel, angular, and axial misalignment of bearing units. As a result, it is now possible to allow variations in the distance between castings and parallel, angular, and axial misalignment of the upper and lower bearing units. By installing the developed new bearing unit on the rotating shaft system and making improvements while continuing to use it in actual operation, we succeeded in reducing the early failure and extending the operating life by more than double. With this development, the maintenance time has been reduced to one week by reducing the number of replacing the bearing unit. In addition, we have realized one regular maintenance that was carried out about three times a year, and as a benefit, we were able to reduce the amount of sulfur hexafluoride (SF$$_{6}$$) gas, which is a greenhouse gas, to about 33$$sim$$50% per year. We describe about development of new bearing units and these maintenance status from 2006 to 2020.

Journal Articles

Phase diagram of the QCD Kondo effect and inactivation of the magnetic catalysis

Hattori, Koichi*; Suenaga, Daiki*; Suzuki, Kei; Yasui, Shigehiro*

EPJ Web of Conferences, 276, p.01015_1 - 01015_5, 2023/03

 Times Cited Count:0 Percentile:0.91(Physics, Atomic, Molecular & Chemical)

We investigate the QCD phase diagram in strong magnetic fields with heavy-quark impurities and determine the ground state within the mean-field analysis. The ground state is characterized by magnitudes of the pairing not only between the light quark and antiquark, i.e., chiral condensate, but also between the light quark and heavy-quark impurity, dubbed the Kondo condensate. We propose signatures of the interplay and/or competition between those two pairing phenomena reflected in the magnitude of the chiral condensate that is saturated with respect to the magnetic-field strength and anomalously increases with increasing temperature.

Journal Articles

Investigation of hydrogen superoxide adsorption during ORR on Pt/C catalyst in acidic solution for PEFC by ${it in-situ}$ high energy resolution XAFS

Yamamoto, Naoki*; Matsumura, Daiju; Hagihara, Yuto*; Tanaka, Kei*; Hasegawa, Yuta*; Ishii, Kenji*; Tanaka, Hirohisa*

Journal of Power Sources, 557, p.232508_1 - 232508_10, 2023/02

 Times Cited Count:2 Percentile:29.01(Chemistry, Physical)

Journal Articles

Formation of MPd$$_{3+x}$$ (M = Gd, Np) by the reaction of MN with Pd and chlorination of MPd$$_{3+x}$$ using cadmium chloride

Hayashi, Hirokazu; Shibata, Hiroki; Sato, Takumi; Otobe, Haruyoshi

Journal of Radioanalytical and Nuclear Chemistry, 332(2), p.503 - 510, 2023/02

 Times Cited Count:0 Percentile:0.01(Chemistry, Analytical)

The formation of MPd$$_{3+x}$$ (M = Gd, Np) by the reaction of MN with Pd at 1323 K in Ar gas flow was observed. Cubic AuCu$$_3$$-type GdPd$$_{3.3}$$ (${it a}$ = 0.4081 $$pm$$ 0.0001 nm) and NpPd$$_3$$ (${it a}$ = 0.4081 $$pm$$ 0.0001 nm) were identified, respectively. The product obtained from the reaction of NpN with Pd contained additional phases including the hexagonal TiNi$$_3$$-type NpPd$$_3$$. Chlorination of the MPd$$_{3+x}$$ (M = Gd, Np) samples was accomplished by the solid-state reaction using cadmium chloride at 673 K in a dynamic vacuum. Pd-rich solid solution phase saturated with Cd and an intermetallic compound PdCd were obtained as by-products of MCl$$_3$$ formation.

1349 (Records 1-20 displayed on this page)